Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Des Monomers Polym ; 25(1): 89-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431615

RESUMO

The polymerization of aniline hydrochloride by inverse microemulsion in a batch process and the semicontinuous process was studied as a function of the surfactant ionic and nonionic. Polymerizations were carried out at 60°C for 4 h with a yield polymer of circa 67 and 27% wt. for ionic and nonionic surfactants. The conductivity of synthesized polyaniline by the semicontinuous process is higher up to three orders of magnitude than that of the batch process for both surfactants. The calculating degree of oxidation by UV-Vis showed the relative intensities of the quinoid to benzenoid unit around one. The morphology was determined by Scanning Electron Microscopy (SEM) and observed that the formation of the different morphologies is due to the self-assembly behavior of surfactant. The diameter z-average particle size (Dz) was studied by Transmission Electron Microscopy (TEM), which determined that the diameter particle in a semicontinuous state is larger than the one produced in a batch; this is due to the control of monomer addition in the system. These findings suggest that the polymerization process and the type of surfactant influence the properties of polyaniline.

2.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201769

RESUMO

Hyaluronic acid (HA) and gelatin (Gel) are major components of the extracellular matrix of different tissues, and thus are largely appealing for the construction of hybrid hydrogels to combine the favorable characteristics of each biopolymer, such as the gel adhesiveness of Gel and the better mechanical strength of HA, respectively. However, despite previous studies conducted so far, the relationship between composition and scaffold structure and physico-chemical properties has not been completely and systematically established. In this work, pure and hybrid hydrogels of methacroyl-modified HA (HAMA) and Gel (GelMA) were prepared by UV photopolymerization and an extensive characterization was done to elucidate such correlations. Methacrylation degrees of ca. 40% and 11% for GelMA and HAMA, respectively, were obtained, which allows to improve the hydrogels' mechanical properties. Hybrid GelMA/HAMA hydrogels were stiffer, with elastic modulus up to ca. 30 kPa, and porous (up to 91%) compared with pure GelMA ones at similar GelMA concentrations thanks to the interaction between HAMA and GelMA chains in the polymeric matrix. The progressive presence of HAMA gave rise to scaffolds with more disorganized, stiffer, and less porous structures owing to the net increase of mass in the hydrogel compositions. HAMA also made hybrid hydrogels more swellable and resistant to collagenase biodegradation. Hence, the suitable choice of polymeric composition allows to regulate the hydrogels´ physical properties to look for the most optimal characteristics required for the intended tissue engineering application.


Assuntos
Materiais Biocompatíveis/química , Gelatina/química , Ácido Hialurônico/química , Hidrogéis/química , Metacrilatos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Humanos , Polímeros/química
3.
Biosens Bioelectron ; 26(11): 4471-6, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21664117

RESUMO

The determination of antigliadin antibodies from human serum samples is of vital importance for the diagnosis of an autoimmune disease such as celiac disease. An electrochemical immunosensor that mimics traditional ELISA type architecture has been constructed for the detection of antigliadin antibodies with control over the orientation and packing of gliadin antigen molecules on the surface of gold electrodes. The orientation of the antigen on the surface has been achieved using a carboxylic-ended bipodal alkanethiol that is covalently linked with amino groups of the antigen protein. The bipodal thiol presents a long poly(ethyleneglycol)-modified chain that acts as an excellent non-specific adsorption barrier. The bipodal nature of the thiol ensured a good spacing and hence good diffusion properties of electroactive species through the self-assembled monolayer, which is vital for the efficiency of the constructed electrochemical immunosensor. The electrochemical immunosensor was characterized using surface plasmon resonance as well as electrochemical impedance spectroscopy. Amperometric evaluation of the sensor with polyclonal antigliadin antibodies showed stable and reproducible low limits of detection (46 ng/mL; % RSD = 8.2, n = 5). The behaviour and performance of the electrochemical immunosensor with more complex matrixes such as reference serum solutions and real patient samples was evaluated and compared with commercial ELISA kits demonstrating an excellent degree of correlation in thirty minutes total assay time; the electrochemical immunosensor not only delivers a positive or negative result, it allows the estimation of semi-quantitative antibody contents based on the comparison against clinical reference solutions.


Assuntos
Autoanticorpos/sangue , Técnicas Biossensoriais/métodos , Gliadina/imunologia , Autoantígenos , Técnicas Biossensoriais/estatística & dados numéricos , Doença Celíaca/diagnóstico , Doença Celíaca/imunologia , Espectroscopia Dielétrica , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoensaio/métodos , Limite de Detecção , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...